Урок "числовая окружность". Внеклассный урок - числовая окружность Числовая окружность пи

Числовая окружность - это единичная окружность, точки которой соответствуют определенным действительным числам.

Единичной окружностью называют окружность радиуса 1.

Общий вид числовой окружности.

1) Ее радиус принимается за единицу измерения.

2) Горизонтальный и вертикальный диаметры делят числовую окружность на четыре четверти. Их соответственно называют первой, второй, третьей и четвертой четвертью.

3) Горизонтальный диаметр обозначают AC, причем А - это крайняя правая точка.
Вертикальный диаметр обозначают BD, причем B - это крайняя верхняя точка.
Соответственно:

первая четверть - это дуга AB

вторая четверть - дуга BC

третья четверть - дуга CD

четвертая четверть - дуга DA

4) Начальная точка числовой окружности - точка А.

Отсчет по числовой окружности может вестись как по часовой стрелке, так и против часовой стрелки.

Отсчет от точки А против часовой стрелки называется положительным направлением .

Отсчет от точки А по часовой стрелке называется отрицательным направлением .

Числовая окружность на координатной плоскости.

Центр радиуса числовой окружности соответствует началу координат (числу 0).

Горизонтальный диаметр соответствует оси x , вертикальный - оси y .

Начальная точка А числовой окружнос ти находится на оси x и имеет координаты (1; 0).


Имена и местонахождение основных точек числовой окружности:

Как запомнить имена числовой окружности.

Есть несколько простых закономерностей, которые помогут вам легко запомнить основные имена числовой окружности.

Перед тем как начать, напомним: отсчет ведется в положительном направлении, то есть от точки А (2π) против часовой стрелки.

1) Начнем с крайних точек на осях координат.

Начальная точка - это 2π (крайняя правая точка на оси х , равная 1).

Как вы знаете, 2π - это длина окружности. Значит, половина окружности - это 1π или π. Ось х делит окружность как раз пополам. Соответственно, крайняя левая точка на оси х , равная -1, называется π.

Крайняя верхняя точка на оси у , равная 1, делит верхнюю полуокружность пополам. Значит, если полуокружность - это π, то половина полуокружности - это π/2.

Одновременно π/2 - это и четверть окружности. Отсчитаем три таких четверти от первой до третьей - и мы придем в крайнюю нижнюю точку на оси у , равной -1. Но если она включает три четверти - значит имя ей 3π/2.

2) Теперь перейдем к остальным точкам. Обратите внимание: все противоположные точки имеют одинаковый знаменатель - причем это противоположные точки и относительно оси у , и относительно центра осей, и относительно оси х . Это нам и поможет знать их значения точек без зубрежки.


Надо запомнить лишь значение точек первой четверти: π/6, π/4 и π/3. И тогда мы «увидим» некоторые закономерности:

- Относительно оси у в точках второй четверти, противоположных точкам первой четверти, числа в числителях на 1 меньше величины знаменателей. К примеру, возьмем точку π/6. Противоположная ей точка относительно оси у тоже в знаменателе имеет 6, а в числителе 5 (на 1 меньше). То есть имя этой точки: 5π/6. Точка, противоположная π/4 тоже имеет в знаменателе 4, а в числителе 3 (на 1 меньше, чем 4) - то есть это точка 3π/4.
Точка, противоположная π/3, тоже имеет в знаменателе 3, а в числителе на 1 меньше: 2π/3.

- Относительно центра осей координат все наоборот: числа в числителях противоположных точек (в третьей четверти) на 1 больше значения знаменателей. Возьмем опять точку π/6. Противоположная ей относительно центра точка тоже имеет в знаменателе 6, а в числителе число на 1 больше - то есть это 7π/6.
Точка, противоположная точке π/4, тоже имеет в знаменателе 4, а в числителе число на 1 больше: 5π/4.
Точка, противоположная точке π/3, тоже имеет в знаменателе 3, а в числителе число на 1 больше: 4π/3.

- Относительно оси х (четвертая четверть) дело посложнее. Здесь надо к величине знаменателя прибавить число, которое на 1 меньше - эта сумма и будет равна числовой части числителя противоположной точки. Начнем опять с π/6. Прибавим к величине знаменателя, равной 6, число, которое на 1 меньше этого числа - то есть 5. Получаем: 6 + 5 = 11. Значит, противоположная ей относительно оси х точка будет иметь в знаменателе 6, а в числителе 11 - то есть 11π/6.

Точка π/4. Прибавляем к величине знаменателя число на 1 меньше: 4 + 3 = 7. Значит, противоположная ей относительно оси х точка имеет в знаменателе 4, а в числителе 7 - то есть 7π/4.
Точка π/3. Знаменатель равен 3. Прибавляем к 3 на единицу меньшее число - то есть 2. Получаем 5. Значит, противоположная ей точка имеет в числителе 5 - и это точка 5π/3.

3) Еще одна закономерность для точек середин четвертей. Понятно, что их знаменатель равен 4. Обратим внимание на числители. Числитель середины первой четверти - это 1π (но 1 не принято писать). Числитель середины второй четверти - это 3π. Числитель середины третьей четверти - это 5π. Числитель середины четвертой четверти - это 7π. Получается, что в числителях середин четвертей - четыре первых нечетных числа в порядке их возрастания:
(1)π, 3π, 5π, 7π.
Это тоже очень просто. Поскольку середины всех четвертей имеют в знаменателе 4, то мы уже знаем их полные имена: π/4, 3π/4, 5π/4, 7π/4.

Особенности числовой окружности. Сравнение с числовой прямой.

Как вы знаете, на числовой прямой каждая точка соответствует единственному числу. К примеру, если точка А на прямой равна 3, то она уже не может равняться никакому другому числу.

На числовой окружности все иначе, поскольку это окружность. К примеру, чтобы из точки А окружности прийти к точке M, можно сделать это, как на прямой (только пройдя дугу), а можно и обогнуть целый круг, а потом уже прийти к точке M. Вывод:

Пусть точка M равна какому-то числу t. Как мы знаем, длина окружности равна 2π. Значит, точку окружности t мы можем записать двояко: t или t + 2π. Это равнозначные величины.
То есть t = t + 2π. Разница лишь в том, что в первом случае вы пришли к точке M сразу, не делая круга, а во втором случае вы совершили круг, но в итоге оказались в той же точке M. Таких кругов можно сделать и два, и три, и двести. Если обозначить количество кругов буквой n , то получим новое выражение:
t = t + 2πn .

Отсюда формула:

Числовая окружность – это единичная окружность, точки которой соответствуют определенным действительным числам.

Единичной окружностью называют окружность радиуса 1.

Общий вид числовой окружности.

1) Ее радиус принимается за единицу измерения.

2) Горизонтальный и вертикальный диаметры делят числовую окружность на четыре четверти (см.рисунок). Их соответственно называют первой, второй, третьей и четвертой четвертью.

3) Горизонтальный диаметр обозначают AC, причем А – это крайняя правая точка.
Вертикальный диаметр обозначают BD, причем B – это крайняя верхняя точка.
Соответственно:

первая четверть – это дуга AB

вторая четверть – дуга BC

третья четверть – дуга CD

четвертая четверть – дуга DA

4) Начальная точка числовой окружности – точка А.

Отсчет по числовой окружности может вестись как по часовой стрелке, так и против часовой стрелки.
Отсчет от точки А против часовой стрелки называется положительным направлением .
Отсчет от точки А по часовой стрелке называется отрицательным направлением .

Числовая окружность на координатной плоскости.

Центр радиуса числовой окружности соответствует началу координат (числу 0).

Горизонтальный диаметр соответствует оси x , вертикальный – оси y .

Начальная точка А числовой окружности находится на оси x и имеет координаты (1; 0).

Значения x и y в четвертях числовой окружности:

Основные величины числовой окружности:

Имена и местонахождение основных точек числовой окружности:


Как запомнить имена числовой окружности.

Есть несколько простых закономерностей, которые помогут вам легко запомнить основные имена числовой окружности.

Перед тем как начать, напомним: отсчет ведется в положительном направлении, то есть от точки А (2π) против часовой стрелки.

1) Начнем с крайних точек на осях координат.

Начальная точка – это 2π (крайняя правая точка на оси х , равная 1).

Как вы знаете, 2π – это длина окружности. Значит, половина окружности – это 1π или π. Ось х делит окружность как раз пополам. Соответственно, крайняя левая точка на оси х , равная -1, называется π.

Крайняя верхняя точка на оси у , равная 1, делит верхнюю полуокружность пополам. Значит, если полуокружность – это π, то половина полуокружности – это π/2.

Одновременно π/2 – это и четверть окружности. Отсчитаем три таких четверти от первой до третьей – и мы придем в крайнюю нижнюю точку на оси у , равной -1. Но если она включает три четверти – значит имя ей 3π/2.

2) Теперь перейдем к остальным точкам. Обратите внимание: все противоположные точки имеют одинаковый числитель – причем это противоположные точки и относительно оси у , и относительно центра осей, и относительно оси х . Это нам и поможет знать их значения точек без зубрежки.

Надо запомнить лишь значение точек первой четверти: π/6, π/4 и π/3. И тогда мы «увидим» некоторые закономерности:

- Относительно оси у в точках второй четверти, противоположных точкам первой четверти, числа в числителях на 1 меньше величины знаменателей. К примеру, возьмем точку π/6. Противоположная ей точка относительно оси у тоже в знаменателе имеет 6, а в числителе 5 (на 1 меньше). То есть имя этой точки: 5π/6. Точка, противоположная π/4, тоже имеет в знаменателе 4, а в числителе 3 (на 1 меньше, чем 4) – то есть это точка 3π/4.
Точка, противоположная π/3, тоже имеет в знаменателе 3, а в числителе на 1 меньше: 2π/3.


- Относительно центра осей координат все наоборот: числа в числителях противоположных точек (в третьей четверти) на 1 больше значения знаменателей. Возьмем опять точку π/6. Противоположная ей относительно центра точка тоже имеет в знаменателе 6, а в числителе число на 1 больше – то есть это 7π/6.

Точка, противоположная точке π/4, тоже имеет в знаменателе 4, а в числителе число на 1 больше: 5π/4.
Точка, противоположная точке π/3, тоже имеет в знаменателе 3, а в числителе число на 1 больше: 4π/3.

- Относительно оси х (четвертая четверть) дело посложнее. Здесь надо к величине знаменателя прибавить число, которое на 1 меньше – эта сумма и будет равна числовой части числителя противоположной точки. Начнем опять с π/6. Прибавим к величине знаменателя, равной 6, число, которое на 1 меньше этого числа – то есть 5. Получаем: 6 + 5 = 11. Значит, противоположная ей относительно оси х точка будет иметь в знаменателе 6, а в числителе 11 – то есть 11π/6.

Точка π/4. Прибавляем к величине знаменателя число на 1 меньше: 4 + 3 = 7. Значит, противоположная ей относительно оси х точка имеет в знаменателе 4, а в числителе 7 – то есть 7π/4.
Точка π/3. Знаменатель равен 3. Прибавляем к 3 на единицу меньшее число – то есть 2. Получаем 5. Значит, противоположная ей точка имеет в числителе 5 – и это точка 5π/3.

3) Еще одна закономерность для точек середин четвертей. Понятно, что их знаменатель равен 4. Обратим внимание на числители. Числитель середины первой четверти – это 1π (но 1 не принято писать). Числитель середины второй четверти – это 3π. Числитель середины третьей четверти – это 5π. Числитель середины четвертой четверти – это 7π. Получается, что в числителях середин четвертей – четыре первых нечетных числа в порядке их возрастания:
(1)π, 3π, 5π, 7π.
Это тоже очень просто. Поскольку середины всех четвертей имеют в знаменателе 4, то мы уже знаем их полные имена: π/4, 3π/4, 5π/4, 7π/4.

Особенности числовой окружности. Сравнение с числовой прямой.

Как вы знаете, на числовой прямой каждая точка соответствует единственному числу. К примеру, если точка А на прямой равна 3, то она уже не может равняться никакому другому числу.

На числовой окружности все иначе, поскольку это окружность. К примеру, чтобы из точки А окружности прийти к точке M, можно сделать это, как на прямой (только пройдя дугу), а можно и обогнуть целый круг, а потом уже прийти к точке M. Вывод:

Пусть точка M равна какому-то числу t. Как мы знаем, длина окружности равна 2π. Значит, точку окружности t мы можем записать двояко: t или t + 2π. Это равнозначные величины.
То есть t = t + 2π. Разница лишь в том, что в первом случае вы пришли к точке M сразу, не делая круга, а во втором случае вы совершили круг, но в итоге оказались в той же точке M. Таких кругов можно сделать и два, и три, и двести. Если обозначить количество кругов буквой k , то получим новое выражение:
t = t + 2πk .

Отсюда формула:

Уравнение числовой окружности
(второе уравнение – в разделе «Синус, косинус, тангенс, котангенс»):

x 2 + y 2 = 1

Представляем вашему вниманию видеоурок по теме «Числовая окружность». Дается определение, что такое синус, косинус, тангенс, котангенс и функции y = sin x , y = cos x , y = tg x , y = ctg x для любого числового аргумента. Рассматривается стандартные задачи на соответствие между числами и точками в единичной числовой окружности для нахождения каждому числу единственной точки, и, наоборот, на нахождение для каждой точки множество чисел которые ей соответствуют.

Тема: Элементы теории тригонометрических функций

Урок: Числовая окружность

Наша ближайшая цель - определить тригонометрические функции: синус , косинус , тангенс , котангенс-

Числовой аргумент можно откладывать на координатной прямой или на окружности.

Такая окружность называется числовой или единичной, т.к. для удобства берут окружность с

Например, дана точка Отметим ее на координатной прямой

и на числовой окружности .

При работе с числовой окружностью условились, что движение против часовой стрелки - положительное направление, по часовой стрелке - отрицательное.

Типовые задачи - нужно определить координаты заданной точки либо, наоборот, найти точку по ее координатам.

Координатная прямая устанавливает взаимно-однозначное соответствие между точками и числами. Например, числу соответствует точка А с координатой

Каждая точка В с координатой характеризуется только одним числом - расстоянием от 0 до взятым со знаком плюс или минус.

На числовой окружности взаимно-однозначное соответствие работает только в одну сторону.

Например, есть точка В на координатной окружности (рис.2), длина дуги равна 1, т.е. эта точка соответствует 1.

Дана окружность, длина окружности Если то - длина единичной окружности.

Если мы прибавим , получим ту же точку В, еще - тоже попадем в т. В, отнимем - тоже т. В.

Рассмотрим точку B: длина дуги =1, тогда числа характеризуют т. В на числовой окружности.

Таким образом, числу 1 соответствует единственная точка числовой окружности - точка В, а точке В соответствует бесчисленное множество точек вида .

Для числовой окружности верно следующее:

Если т. М числовой окружности соответствует числу то она соответствует и числу вида

Можно делать сколько угодно полных оборотов вокруг числовой окружности в положительном или отрицательном направлении - точка одна и та же. Поэтому тригонометрические уравнения имеют бесчисленное множество решений.

Например, дана точка D. Каковы числа, которым она соответствует?

Измеряем дугу .

множество всех чисел, соответствующих точке D.

Рассмотрим основные точки на числовой окружности.

Длина всей окружности.

Т.е. запись множества координат может быть различной.

Рассмотрим типовые задачи на числовую окружность.

1. Дано: . Найти: точку на числовой окружности.

Выделяем целую часть:

Необходимо найти т. на числовой окружности. , тогда.

В это множество входит и точка .

2. Дано: . Найти: точку на числовой окружности.

Необходимо найти т.

т.также принадлежит этому множеству.

Решая стандартные задачи на соответствие между числами и точками на числовой окружности, мы выяснили, что можно для каждого числа найти единственную точку, и можно для каждой точки найти множество чисел, которые характеризуются данной точкой.

Разделим дугу на три равные части и отметим точки M и N.

Найдем все координаты этих точек.

Итак, наша цель - определение тригонометрических функций. Для этого нам необходимо научиться задавать аргумент функции. Мы рассмотрели точки единичной окружности и решили две типовые задачи - найти точку на числовой окружности и записать все координаты точки единичной окружности.

1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. - М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс: учеб.для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил.

№№ 531; 536; 537; 541; 552.

Если вы уже знакомы с тригонометрическим кругом , и хотите лишь освежить в памяти отдельные элементы, или вы совсем нетерпеливы, – то вот он, :

Мы же здесь будем все подробно разбирать шаг за шагом.

Тригонометрический круг – не роскошь, а необходимость

Тригонометрия у многих ассоциируется с непроходимой чащей. Вдруг наваливается столько значений тригонометрических функций, столько формул… А оно ведь, как, – незаладилось вначале, и… пошло-поехало… сплошное непонимание…

Очень важно не махать рукой на значения тригонометрических функций , – мол, всегда можно посмотреть в шпору с таблицей значений.

Если вы постоянно смотрите в таблицу со значениями тригонометрических формул, давайте избавляться от этой привычки!

Нас выручит ! Вы несколько раз поработаете с ним, и далее он у вас сам будет всплывать в голове. Чем он лучше таблицы? Да в таблице-то вы найдете ограниченное число значений, а на круге – ВСЕ!

К примеру, скажите, глядя в стандартную таблицу значений тригонометрических формул , чему равен синус, скажем, 300 градусов, или -45.


Никак?.. можно, конечно, подключить формулы приведения … А глядя на тригонометрический круг, легко можно ответить на такие вопросы. И вы скоро будете знать как!

А при решении тригонометрических уравнений и неравенств без тригонометрического круга – вообще никуда.

Знакомство с тригонометрическим кругом

Давайте по порядку.

Сначала выпишем вот такой ряд чисел:

А теперь такой:

И, наконец, такой:

Конечно, понятно, что, на самом-то деле, на первом месте стоит , на втором месте стоит , а на последнем – . То есть нас будет больше интересовать цепочка .

Но как красиво она получилась! В случае чего – восстановим эту «лесенку-чудесенку».

И зачем оно нам?

Эта цепочка – и есть основные значения синуса и косинуса в первой четверти.

Начертим в прямоугольной системе координат круг единичного радиуса (то есть радиус-то по длине берем любой, а его длину объявляем единичной).

От луча «0-Старт» откладываем в направлении стрелки (см. рис.) углы .

Получаем соответствующие точки на круге. Так вот если спроецировать точки на каждую из осей, то мы выйдем как раз на значения из указанной выше цепочки.

Это почему же, спросите вы?

Не будем разбирать все. Рассмотрим принцип , который позволит справиться и с другими, аналогичными ситуациями.

Треугольник АОВ – прямоугольный, в нем . А мы знаем, что против угла в лежит катет вдвое меньший гипотенузы (гипотенуза у нас = радиусу круга, то есть 1).

Значит, АВ= (а следовательно, и ОМ=). А по теореме Пифагора

Надеюсь, уже что-то становится понятно?

Так вот точка В и будет соответствовать значению , а точка М – значению

Аналогично с остальными значениями первой четверти.

Как вы понимаете, привычная нам ось (ox) будет осью косинусов , а ось (oy) – осью синусов . позже.

Слева от нуля по оси косинусов (ниже нуля по оси синусов) будут, конечно, отрицательные значения.

Итак, вот он, ВСЕМОГУЩИЙ , без которого никуда в тригонометрии.

А вот как пользоваться тригонометрическим кругом, мы поговорим в .

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Алгебраические задачи с параметрами, 9–11 классы
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Числовая окружность в жизни.
2. Определение числовой окружности.
3. Общий вид и длина числовой окружности.
4. Местонахождение основных точек окружности.

Числовая окружность и жизнь

В реальной жизни часто встречается движение по окружности. Например, соревнования велосипедистов, которые проезжают определенный круг на время или соревнования гоночных автомобилей, которым надо проехать наибольшее количество кругов за отведенное время.


Рассмотрим конкретный пример

Бегун бежит по кругу длиной 400 метров. Спортсмен стартует в точке А (рис. 1) и движется против часовой стрелки. Где он будет находится через 200 м, 800 м, 1500 м? А где провести финишную черту, если бегуну необходимо пробежать 4195 м?

Решение:
Через 200 м бегун будет находиться в точке С. Так как он пробежит ровно половину дистанции.

Пробежав 800 м, бегун сделает ровно два круга и окажется в точке А.

1500м - это 3 круга по 400 м (1200 м) и еще 300 м, то есть $\frac{3}{4}$ от беговой дорожки, финиш этой дистанции в точке D.

Где будет находиться наш бегун пробежав 4195 м? 10 кругов – это 4000 м, останется пробежать 195 м, это на 5 м меньше, чем половина дистанции. Значит финиш будет в точки K, расположенной около точки С.

Определение числовой окружности

Запомните!
– это единичная окружность, точки которой соответствуют определенным действительным числам. Единичной окружностью называют окружность радиуса 1.

Общий вид числовой окружности

1) Радиус окружности принимается за единицу измерения.
2) Горизонтальный диаметр обозначают AC, причем А – это крайняя правая точка.
Вертикальный диаметр обозначают BD, причем B – это крайняя верхняя точка.

Диаметры АС и BD делят окружность на четыре четверти:
первая четверть – это дуга AB.
вторая четверть – дуга BC.
третья четверть – дуга CD.
четвертая четверть – дуга DA.

3) Начальная точка числовой окружности – точка А.
Отсчет от точки А против часовой стрелки называется положительным направлением. Отсчет от точки А по часовой стрелке называется отрицательным направлением.

Длина числовой окружности

Длина числовой окружности вычисляется по формуле:
$L = 2 π * R = 2 π * 1 = 2 π$.
Так как это единичная окружность, то $R = 1$.
Если взять $π ≈ 3,14$, то длина окружности L может быть выражена числом:
$2 π ≈ 2 * 3,14 = 6,28$.
Длина каждой четверти равна: $\frac{1}{4}*2π=\frac{π}{2}$.

Местонахождение основных точек окружности

Основные точки на окружности и их названия представлены на рисунке:

Каждая из четырёх четвертей числовой окружности разделена на три равные части. Около каждой из полученных двенадцати точек записано число, которому она соответствует.

Для числовой окружности верно следующее утверждение:

Если точка $М$ числовой окружности соответствует числу $t$ , то она соответствует и числу вида $t+2π *k$, где $k$ – целое число. $М(t) = M(t+2π*k)$.


Рассмотрим пример.
В единичной окружности дуга АВ разделена точкой М на две равные части, а точками К и Р - на три равные части. Чему равна длина дуги: AM, МВ, АК, КР, РB, АР, КМ?

Длина дуги $АВ =\frac{π}{2}$. Разделив ее на две равные части точкой М, получим две дуги, длиной $\frac{π}{4}$ каждая. Значит, $AM =МВ=\frac{π}{4}$.

Дуга АВ разбита на три равные части точками К и Р. Длина каждой полученной части равна $\frac{1}{3}* \frac{π}{2}$, т. е. $\frac{π}{6}$. Значит, $АК = КР = РВ =\frac{π}{6}$.

Дуга АР состоит из двух дуг АК и КР длиной - $\frac{π}{6}$. Значит, $АР = 2 *\frac{π}{6} =\frac{π}{3}$.

Осталось вычислить длину дуги КМ. Эта дуга получается из дуги AM исключением дуги АК. Таким образом, $КМ = AM – АК =\frac{π}{4} - \frac{π}{6} = \frac{π}{12}$.

Задача:

Найти на числовой окружности точку, которая соответствует заданному числу:
$2π$, $\frac{7π}{2}$, $\frac{π}{4}$, $-\frac{3π}{2}$.


Решение:

Числу $2π$ соответствует точка А, т.к. пройдя по окружности путь длиной $2π$, т.е. ровно одну окружность, мы опять попадем в точку А.

Числу $\frac{7π}{2}$ соответствует точка D, т.к. $\frac{7π}{2}=2π+\frac{3π}{2}$, т.е. двигаясь в положительном направлении, нужно пройти целую окружность и дополнительно путь длиной $\frac{3π}{2}$, который закончится в точке D.

Числу $\frac{π}{4}$ соответствует точка М, т.к. двигаясь в положительном направлении, нужно пройти путь в половину дуги АВ длиной $\frac{π}{2}$, который закончится в точке M.

Числу $-\frac{3π}{2}$ соответствует точка В, т.к. двигаясь в отрицательном направлении из точки А, нужно пройти путь длиной $\frac{3π}{2}$, который закончится в точке В.


Пример.

Найти на числовой окружности точки:
а) $21\frac{π}{4}$;
б) $-37\frac{π}{6}$.


Решение:
Воспользуемся формулой: $М(t) = M(t+2π*k)$ (8 слайд) получим:

а) $\frac{21π}{4} = (4+\frac{5}{4})*π = 4π +\frac{5π}{4} = 2*2π +\frac{5π}{4}$, значит числу $\frac{21π}{4}$ соответствует такое же число, что и числу $\frac{5}{4π}$ – середина третьей четверти.


б) $-\frac{37π}{6}=-(6+\frac{1}{6})*π =-(6π +\frac{π}{6}) = -3*2π - \frac{π }{6}$. Значит, числу $-\frac{37π}{6}$ соответствует такое же число, что и числу $-\frac{1}{6π}$. Тоже самое, что и $\frac{11π}{6}$.


Пример.

Найти все числа t, которым на числовой окружности соответствуют точки, принадлежащие заданной дуге:
а) ВА;
б) МK.


Решение:

а) Дуга ВА – это дуга с началом в точке В и концом в точке А, при движении по окружности против часовой стрелки. Точка В соответственно равна $\frac{π}{2}$, а точка А равна $2π$. Значит, для точек t имеем: $\frac{π}{2} ≤ t ≤ 2π$. Но согласно формуле на слайде 8, числам $\frac{π}{2}$ и $2π$ соответствуют числа вида $\frac{π}{2}+2π*k$ и $2π+2π*k$ соответственно.

$\frac{π}{2} +2π*k ≤ t ≤ 2π +2π*k$, где $к$ – целое число.


б) Дуга МK – это дуга с началом в точке М и концом в точке К. Точка М соответственно равна $-\frac{3π}{4}$, а точка К равна $\frac{π}{4}$.
Значит для точек t имеем:
$\frac{-3π}{4} ≤ t ≤\frac{π}{4}$.
Согласно формуле на слайде 8 числам $-\frac{3π}{4}$ и $\frac{π}{4}$ соответствуют числа вида: $-\frac{3π}{4}+2π*k$ и $\frac{π}{4}+2π*k$ соответственно.
Тогда наше число t принимает значения:
$-\frac{3π}{4}+2π*k ≤ t ≤ \frac{π}{4} +2π*k$, где $к$ – целое число.

Задачи для самостоятельного решения

1) На единичной окружности дуга ВС разделена точкой Т на две равные части, а точками К и Р на три равные части. Чему равна длина дуги: ВТ, ТС, ВК, КР, РС, ВР, КТ?

2) Найти на числовой окружности точку, которая соответствует заданному числу:
$π$, $\frac{11π}{2}$, $\frac{21π}{4}$, $-\frac{7π}{2}$, $\frac{17π}{6}$.

3) Найти все числа t, которым на числовой окружности соответствуют точки, принадлежащие заданной дуге:
а) АВ;
б) АС;
в) PM, где P – середина дуги АВ, а точка М – середина DA.